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POTENTIAL




THE HIGGS BOSON

V(o)
In 2012, LHC has found the Higgs
boson. T
V(b)) = —m?dTd + A(dT D),
where cD:i( y ) 0 ®
V2\v+ h Electroweak
Vacuum

Higgs boson mass:
M; =125.09+0.21 + 0.11 GeV.
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A mass smaller than expected!

A small quartic coupling
A= M,) ~ M%/2v* = 0.129

C. Patrignani et al.(Particle Data Group),
Chin. Phys. C, 40, 100001 (2016).
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 QFT: Coupling constants

chan with ener | 30 bands in
ges RIRCIE gy scaie p ' M; = 173.3 + 0.8 GeV (gray)
36 \ a3(My) = 0.1184 + 0.0007(red)

4 " _
° — _|_ 000 My =125.1 £ 0.2 GeV (blue)
ﬁ), (4_71.)2 yt

« Dueto large top mass
i |

— YV
\/Eyt

 If no new physics, A(h)
becomes very small and turns
: 10 12
negatlve at ” 2 10 _ 10 102 104 106 108 101[! 1012 1014 1016 1018 102[!
G eV. RGE scale p in GeV

Figure from D. Buttazzo et al., arXiv:1307.3536
[hep-ph]

mt=

~
[oT4]
g
-
=
=
e}
O
>
|
g
o
&b
80
T




THE HIGGS EFFECTIVE
POTENTIAL

 Another minimum in the potential: Planckain vacuum!!

 Much lower than the electroweak vacuum.

e Qur universe can tunnel into the Planckain vacuum and
end in a big crunch!

sign(V)log|V(¢)| Planckian Vacuum
h A
T === __ . log ()
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Our Electroweak & >4

Vacuum ~1019 — 1012 GeV




META-STABILITY OF

J. Elias-Miro et al., Phys. Lett. B709, 222 (2012)

O U R VAC U U M G. Degrassi et al., JHEP 1208, 098 (2012)
D. Buttazzo et al., arXiv:1307.3536 [hep-ph]

Our universe seems to be right on the meta-stable region.
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THE HIGGS EFFECTIVE
POTENTIAL

What does it imply?
» A shallow Higgs potential at large scale
» Alarge Higgs VEV during inflation
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QUANTUM
FLUCTUATION
DURING
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QUANTUM FLUCTUATION
DURING INFLATION

 During inflation, guantum fluctuations get amplified.

« They becomes classical when the wavelength exits the
horizon.

 ¢(t) jumps randomly like Brownian motion.

Horizon Horizon

€< —
—> Qo 0
Inflation
Quantum fluctuation Becomes classical




QUANTUM FLUCTUATION
DURING INFLATION

e Quantum fluctuation brings V(9)

the field to non-zero value.
Quantum

» Classical rolling down follows Jump

¢ +3H,p = -V'(¢9), e

which requires

- ® cant
d*V(¢) g Roll Down
Lz d g2 i m_¢ O Classicalb;

« If my < Hy, insufficient time to P

relax (slow-rolling). Bunch, Davies (1978);
Linde (1982);
* A non-zero VEV of the scalar Hawking, Moss (1982):
field is building up. Starobinsky (1982);

Vilenkin, Ford (1982);
Starobinsky, Yokoyama (1994).




LARGE INITIAL VEV |
OF SCALAR FIELDS  AViewnass)

 Fokker-Planck equation:

P () _  djc . d (H3P) P.dv
a P where ]C_aq) 82 u H d¢

P.(¢, t): probability distribution of ¢
« Massless scalar, the fleld undergoes random walks

P = /(P?) = H’ Vit = H’\/_, N: number of e-folds

e Massive case V(¢) = %mzc,bz:

3 H?
0~ [8m2 m

. ForV(¢)=50%  ¢o=0.36H,/AV/*
 In general, V(gpy) ~ Hf




LARGE HIGGS VEV
DURING INFLATION

 Higgs has a shallow potential at large scale (small 4).

 Large Higgs vacuum expectation value (VEV) during
inflation.

« For inflationary scale A; = 10'° GeV, the Hubble rate

2
H; = —L_~10!3 GeV, and 1~0.01, the Higgs VEV after
V3My,
inflation is

o = 0.36H,/AY*~ 1013GeV.

« For such alarge VEV, the Higgs field can be sensitive to
higher dimensional operators.




HIGGS FIELD
RELAXATION




POST-INFLATIONARY
HIGGS RELAXATION

« As theinflation end, the H drops.

 When H < m, off; the Higgs field can relax classically

Wer(T@®)
10, ¥

« Veagr(@,T) Is the finite temperature effective potential.

0

d(t) + 3H(OP(D) +

* Higgs field oscillates with decreasing amplitude due to the
Hubble friction.

» Relaxation time

4/3 _
Lrix = tRH( 2 ) if thermal mass dominates V = la%Tzq)Z
arTRytRH 2
tyix = 6.90/VAg, if the zero T dominates Vv ~ A¢*/4

« Typically during reheating or right after reheating.




POST-INFLATIONARY
HIGGS RELAXATION

¢y =2.67x10"2 Gev
Try =5.5%1012 GeV
H; =2.37x10"3 Gev

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014

~¢— Endof Inflationat =0

t/trRH

Thermal mass dominated Zero T potential dominated

e What can this do for us?

 Breaks time reversal symmetry,
and provides the out of thermal equilibrium condition.

« An important epoch for the matter-antimatter asymmetry!




POST-INFLATIONARY
HIGGS RELAXATION

 Ifthe thermal mass dominates,
|
V(p, T) = E“%Tquz

where a; ~ \/(/1 +29g2+292 +3y?)/12 ~ 0.33 at u = 10*3 GeV.

« The equation of motion is approximately
2

oo 2 o TRH tRH »
G + - p(0) + ay b d) =0

e A solution:

3\*? /5 4 1
¢(t) = ¢y <E> r <§>]2/3 < L;Tﬁ x3/4) (C{Tﬂ)z/?’\/}

where ﬁ = TRHtRH and x = t/tRH'




LEPTOGENESIS
VIA THE RELAXATION OF
THE HIGGS FIELD




SAKHAROV
CO N D I T I O N S Andrei D. Sakharov (1967)

Successfully Leptogenesis requires:
1. Deviation from thermal equilibrium

» Post-inflationary Higgs relaxation
2. Cand CP violations

» CP phase In the guark sector (not enough),
higher dimensional operator, ...

3. Lepton number violation
» Right-handed Majorana neutrino, others ...




EFFECTIVE OPERATOR e semior s

 Consider the effective operator:
i | . n,
n
W and B: SU(2); and U(1)y gauge fields

W: dual tensor of W
A,,: energy scale when the operator is relevant

 In standard model, integrating out a loop with all 6 quarks:

 But suppressed by small Yukawa and small CP phase




EFFECTIVE OPERATOR

| - -
O = —— ¢*(g*WW — g'*BB)
Ay
 Replace the SM fermions by heavy states that carry SU(2)

charge.

« Scale: A,, = M,, mass (must not from the SM Higgs) or
A,, = T temperature




EFFECTIVE CHEMICAL
POTENTIAL Conen, Kapian, Nelson (1391

1 Iy b,
Og = d*(g*WW — g'*BB)

T A2
Ay
» Using electroweak anomaly equation, we have

06 = — = |BI23,.j"

6——A—2|¢| WL
n

where j% ., is the B + L fermion current.

* Integration by part:
. 1 YAV
06 = 27 (9ul @1 )jp..
n

 Similar to the one use by spontaneous baryogenesis.
« Breaks CPT spontaneously while ¢ is changing!

« Sakharov conditions doesn’t have to be satisfied explicitly
In this form.




EFFECTIVE CHEMICAL
POTENTIAL

1 .
06 = ~5 (9u11°)jp..
n
» Effective chemical potential for baryon and lepton number:
0,191
Heff = =2
eff A%l t

« Shifts the energy levels between fermions and anti-fermions
while Higgs is rolling down (¢ # 0).

() Reheating

=~
Q|

Scalar VEV Leads to
Rolls Dgwn —_—

l,q A




LEPTON NUMBER
VIOLATION

Last ingredient:
» Right-handed neutrino N, with Majorana mass term Mp,.
The processes for AL = 2:
« v h® < v h°
e v,v; < h°h°
o vvy < h°hm°
Form,~0.1 eV,

2
L,m,;

~10731 GeVv 2.

oRp~
16Tvsy,




EVO LUT I O N O F LY, Pearce, Kusenko
LEPTON ASYMMETRY  Pvwe Revo%2 o

Boltzman equation:

, 2
i, +3Hn, ~ —— T30y (nL o FﬂefﬂQ)

End of inflation
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A;=1.5x101° GeV, I, = 108 GeV, Tgy = 5 x 1012 GeV, and ¢, = 6 x 1013 GeV.
For pegs < M,? case, choose M,, = 5 x 10'% GeV.

Could be the origin of matter-antimatter asymmetry!




SUMMARY

 Our universe seems to be right on the meta-stable region.

« The quartic coupling of the Higgs potential turns negative
giving a shallow potential.

 Higgs can obtain large vacuum expectation during
inflation.

 The relaxation of the Higgs VEV happens during reheating.

* Higgs relaxation provides the out of thermal equilibrium
condition and breaks T invariant.

 Leptogenesis viathe Higgs relaxation is possible.
 Higgs relaxation is an important epoch in the early
universe.

Thanks for your listening!
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